Towards Universal Sequence Representation Learning for Recommender Systems

Advisor: Jia-Ling, Koh Speaker: Hsiang-Hui Chou Source: KDD'22 Date:2022/11/07

- Introduction
- Method
- Experiment
- Conclusion

Sequential recommendation

Input

user interaction sequence $s = \{i_1, i_2, \dots, i_n\}$

each interacted item *i* associated with a unique item ID and description text $t_i = \{w_1, w_2, \dots, w_c\}$

Output probability

- Introduction
- Method
- Experiment
- Conclusion

Universal sequence representation learning approach (UniSRec)

Universal Item Representation

Universal Textual Item Representation

-Semantic Transformation via Parametric Whitening

Universal Sequence Representation Pre-training Seq-Item Contrastive Task <-Seq-Seq Contrastive Task < Text Rep ... Text Rep i_2 i_n

 $x_i = BERT([[CLS]; w_1, \ldots, w_c])$

$$\widetilde{x}_i = (x_i - b) \cdot W_1$$

Bert whitening

Algorithm 1 Whitening-k Workflow

Input: Existing embeddings $\{x_i\}_{i=1}^N$ and reserved dimensionality k

1: compute μ and Σ of $\{x_i\}_{i=1}^N$ 2: compute $U, \Lambda, U^T = \text{SVD}(\Sigma)$ 3: compute $W = (U\sqrt{\Lambda^{-1}})[:, :k]$ 4: for $i = 1, 2, \dots, N$ do 5: $\widetilde{x}_i = (x_i - \mu)W$ 6: end for Output: Transformed embeddings $\{\widetilde{x}_i\}_{i=1}^N$

MoE-enhanced Adaptor

Universal Item Representation

$$\boldsymbol{x}_i = \text{BERT}([\text{[CLS]}; w_1, \dots, w_c])$$

 $\widetilde{\boldsymbol{x}}_i = (\boldsymbol{x}_i - \boldsymbol{b}) \cdot \boldsymbol{W}_1$

$$\boldsymbol{v}_i = \sum_{k=1}^G g_k \cdot \widetilde{\boldsymbol{x}}_i^{(k)}$$

 $g = \text{Softmax} (x_i \cdot W_2 + \delta),$ $\delta = \text{Norm}() \cdot \text{Softplus} (x_i \cdot W_3).$ Universal Sequence Representation -Self-attentive Sequence Encoding

$$f_j^0 = \boldsymbol{v}_i + \boldsymbol{p}_j,$$

$$F^{l+1} = \text{FFN}(\text{MHAttn}(F^l)),$$

Universal Sequence Representation

Universal Sequence Representation Pre-training Seq-Item Contrastive Task ← ground-truth items from various scenarios next item Seq-Seq Contrastive Task sequences from augmented various scenarios sequence **Behavior Encoder** Text Rep Text Rep Text Rep i_n 21 22

Sequence-item contrastive task

$$\ell_{S-I} = -\sum_{j=1}^{B} \log \frac{\exp(\mathbf{s}_{j} \cdot \mathbf{v}_{j}/\tau)}{\sum_{j'=1}^{B} \exp(\mathbf{s}_{j} \cdot \mathbf{v}_{j'}/\tau)},$$

Sequence-sequence contrastive task

$$\ell_{S-S} = -\sum_{j=1}^{B} \log \frac{\exp\left(\mathbf{s}_{j} \cdot \widetilde{\mathbf{s}}_{j}/\tau\right)}{\sum_{j'=1}^{B} \exp\left(\mathbf{s}_{j} \cdot \mathbf{s}_{j'}/\tau\right)}.$$

Universal Sequence Representation

Multi-task learning

$$\mathcal{L}_{\mathrm{PT}} = \ell_{S-I} + \lambda \cdot \ell_{S-S},$$

Parameter-Efficient Fine-tuning

Inductive setting

$$P_I(i_{t+1}|s) = \text{Softmax}(s \cdot v_{i_{t+1}}),$$

Transductive setting

$$P_T(i_{t+1}|s) = \operatorname{Softmax}\left(\widetilde{s} \cdot (v_{i_{t+1}} + e_{i_{t+1}})\right)$$

- Introduction
- Method
- Experiment
- Conclusion

Dataset

Datasets	#Users	#Items	#Inters.	Avg. n	Avg. c
Pre-trained	1,361,408	446,975	14,029,229	13.51	139.34
- Food	115,349	39,670	1,027,413	8.91	153.40
- CDs	94,010	64,439	1,118,563	12.64	80.43
- Kindle	138,436	98,111	2,204,596	15.93	141.70
- Movies	281,700	59.203	3,226,731	11.45	97.54
- Home	731,913	185,552	6,451,926	8.82	168.89
Scientific	8,442	4,385	59,427	7.04	182.87
Pantry	13,101	4,898	126,962	9.69	83.17
Instruments	24,962	9,964	208,926	8.37	165.18
Arts	45,486	21,019	395,150	8.69	155.57
Office	87,436	25,986	684,837	7.84	193.22
Online Retail	16,520	3,469	519,906	26.90	27.80

Cross-domain

Cross-platform

Scenario	Dataset	Metric	SASRec	BERT4Rec	FDSA	S ³ -Rec	CCDR	RecGURU	ZESRec	UniSRec _t	UniSRec _{t+ID}	Improv.
Scientific Pantry Cross- Domain Instruments Arts Office	Scientific	Recall@10	0.1080	0.0488	0.0899	0.0525	0.0695	0.1023	0.0851	<u>0.1188</u> *	0.1235*	+14.35%
		NDCG@10	0.0553	0.0243	0.0580	0.0275	0.0340	0.0572	0.0475	0.0641*	0.0634*	+10.52%
		Recall@50	0.2042	0.1185	0.1732	0.1418	0.1647	0.2022	0.1746	0.2394*	0.2473*	+21.11%
		NDCG@50	0.0760	0.0393	0.0759	0.0468	0.0546	0.0786	0.0670	<u>0.0903</u> *	0.0904*	+15.01%
	Pantry	Recall@10	0.0501	0.0308	0.0395	0.0444	0.0408	0.0469	0.0454	<u>0.0636</u> *	0.0693*	+38.32%
		NDCG@10	0.0218	0.0152	0.0209	0.0214	0.0203	0.0209	0.0230	<u>0.0306</u> *	0.0311*	+35.22%
		Recall@50	0.1322	0.1030	0.1151	0.1315	0.1262	0.1269	0.1141	0.1658^{*}	0.1827*	+38.20%
		NDCG@50	0.0394	0.0305	0.0370	0.0400	0.0385	0.0379	0.0378	<u>0.0527</u> *	0.0556*	+39.00%
	Recall@10	0.1118	0.0813	0.1070	0.1056	0.0848	0.1113	0.0783	0.1189*	0.1267*	+13.33%	
	Tractory on the	NDCG@10	0.0612	0.0620	0.0796	0.0713	0.0451	0.0681	0.0497	0.0680	0.0748^{*}	-
	Instruments	Recall@50	0.2106	0.1454	0.1890	0.1927	0.1753	0.2068	0.1387	0.2255*	0.2387*	+13.34%
		NDCG@50	0.0826	0.0756	0.0972	0.0901	0.0647	0.0887	0.0627	0.0912	0.0991*	+1.95%
	Arts	Recall@10	0.1108	0.0722	0.1002	0.1003	0.0671	0.1084	0.0664	0.1066	0.1239*	+11.82%
		NDCG@10	0.0587	0.0479	0.0714	0.0601	0.0348	0.0651	0.0375	0.0586	0.0712	
		Recall@50	0.2030	0.1367	0.1779	0.1888	0.1478	0.1979	0.1323	<u>0.2049</u> *	0.2347*	+15.62%
		NDCG@50	0.0788	0.0619	0.0883	0.0793	0.0523	0.0845	0.0518	0.0799	0.0955*	+8.15%
	Office	Recall@10	0.1056	0.0825	0.1118	0.1030	0.0549	0.1145	0.0641	0.1013	0.1280*	+11.79%
		NDCG@10	0.0710	0.0634	0.0868	0.0653	0.0290	0.0768	0.0391	0.0619	0.0831	-
		Recall@50	0.1627	0.1227	0.1665	0.1613	0.1095	0.1757	0.1113	0.1702	0.2016*	+14.74%
		NDCG@50	0.0835	0.0721	0.0987	0.0780	0.0409	0.0901	0.0493	0.0769	0.0991	+0.41%
Cross- Platform	Online Retail	Recall@10	0.1460	0.1349	0.1490	0.1418	0.1347	0.1467	0.1103	0.1449	0.1537*	+3.15%
		NDCG@10	0.0675	0.0653	0.0719	0.0654	0.0620	0.0658	0.0535	0.0677	0.0724	+0.70%
		Recall@50	0.3872	0.3540	0.3802	0.3702	0.3587	0.3885	0.2750	0.3604	0.3885	0.00%
		NDCG@50	0.1201	0.1131	0.1223	0.1154	0.1108	0.1188	0.0896	0.1149	0.1239*	+1.31%

SASRec

Figure 2: Performance comparison w.r.t. different pretraining datasets on "Scientific" and "Online Retail". "All" denotes the model pre-trained on all five datasets, and "None" denotes the training from scratch.

Figure 3: Ablation study of UniSRec variants on "Scientific" and "Online Retail".

- Introduction
- Method
- Experiment
- Conclusion

Conclusion

- UniSRec utilizes item texts to learn more transferable representations for sequential recommendation
- design a lightweight architecture based on parametric whitening and MoE-enhanced adaptor to learn the universal item representations
- design two contrastive pre-training tasks to learn universal sequence representations from multi-domain sequences